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Quantum-mechanical interference between optical transitions: The effect of laser intensity noise
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In a previous publication [Phys. Rev. A 55, 552 (1997)] we considered the effect of laser phase fluctuations
on three-photon—one-photon phase control of resonance-enhanced photoionization. Here we extend those
studies by considering the role of laser intensity noise in addition to laser phase noise. While our results
indicate that relative intensity fluctuations between the fundamental field and its third harmonic have a sig-
nificant effect on control, the contrast between constructive and destructive interference is nonetheless two
orders of magnitude, even under (reasonable) worst case situations. Consequently, neither laser intensity nor
phase fluctuations appear to pose a serious impediment to the efficient phase control of atomic and molecular

processes. [$1050-2947(99)00403-5]

PACS number(s): 32.80.Rm, 32.80.Qk

In (3+1)-photon phase control, an optical transition is
excited via a three-photon and a one-photon pathway as il-
lustrated in Fig. 1 for the case of Xe multiphoton ionization
[1,2]. The field at the fundamental frequency w; has a phase
¢, , while the third-harmonic field with frequency w5 has a
phase ¢;. (Following common practice, the subscripts indi-
cate the harmonic nature of the field and not the number of
photons required for the transition.) These phases are con-
trolled by passing the two fields through a dispersive me-
dium of length L with indices of refraction n, and n; for the
fundamental and third-harmonic fields, respectively. The rate
of excitation is proportional to the square of the total transi-
tion amplitude and hence proportional to Q3[1+f2
+2 fcos(6)], where 2, is the fundamental field’s three-
photon Rabi frequency, f is the ratio of the one-photon to
three-photon Rabi frequency (i.e., f=3/;), and the rela-
tive phase 6= ¢p3—3 ¢; . (For the purposes of our work here,
we have ignored any constant phase difference between the
two gquantum-mechanical paths since even in those cases
where it might be nonzero it can be incorporated into the
relative phase difference between the two fields.) As the rela-
tive phase difference between the two fields is varied, typi-
cally by changing the vapor pressure of the dispersive me-
dium, the rate of excitation exhibits constructive and
destructive interference. The maximum contrast between
constructive and destructive interference occurs when f
equals unity.

In a previous publication [3], we considered the influence
of laser phase noise on this control process. Since the disper-
sive medium’s propagation constant depends on frequency,
the relative phase between the two fields is a stochastic quan-
tity by virtue of the stochastic nature of the laser fre-

quency: @(2)=0y+ 56(r), where
3@,L
o= [n3—n], (1a)
30w,(t)L
80(1)= —————[n3—n,]. (1b)
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Here &; and dw;(t) refer to the mean frequency and sto-
chastic frequency fluctuation of the fundamental field, re-
spectively. Somewhat surprisingly, our results indicated that
orders of magnitude of contrast could be maintained even
when employing phase diffusion fields (PDFs) with a line-
width of 3 cm™!. Here we extend our previous investigation
by considering fields with amplitude noise as well as phase
noise.

One expects an amplitude noisy field to influence (3
+ 1)-photon phase control since f (in addition to 6) may now
be a stochastic quantity. Unfortunately, little detailed infor-
mation is available regarding the relationship between a fun-
damental field’s stochastic characteristics and those of a har-
monic field generated within a nonlinear medium,
specifically in the sense of coordinated experimental and the-
oretical studies mapping the stochastic characteristics of the
fundamental field to the harmonic field. Of course, on gen-
eral grounds it is known that a third-order process induced
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FIG. 1. Standard (3 +1)-photon phase-control experiment. A
fundamental field from a laser is tripled in a nonlinear medium and
then both the fundamental and third harmonic pass through a dis-
persive medium. Since the refractive indices of the dispersive me-
dium for the fundamental and third-harmonic fields are different. a
relative phase difference between the two fields is created. Our
numerical simulations consider (3 + 1 )-photon phase control of xe-
non photoionization. where IP stands for ionization potential.
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by a chaotic field should depend on a third-order intensity
correlation function, which involves factors of 3!. However,
the 3! term appearing in the third-harmonic field intensity
should be similar to a 3! term appearing in the three-photon
Rabi frequency, implying that f will nonetheless be constant,
a conclusion borne out by results to be presented below.

To go beyond these general considerations, consider the
nonlinear polarization equation, where the nonlinear medi-
um’s third-harmonic polarization P; generates the harmonic
field E5. Defining x5 as the nonlinear electric susceptibility,
we have [4]

B £\ .
Py(1)=x3(wy) - exp[ —i3wit]+cec., (2a)

where [5]

’

(2b)

xs(w))~ > (glrlg)(qlrim)(m|r|n)(n|rlg)

n.m.g (wqg_Swl)(wmg*Zwl)( wng—wl)

and Q;~ x3(w,;). In Eq. (2b), |g) is the ground state and
w;;j=(E;—E;)/fi. Given the stochastic nature of w;, each of
the resonance factors in the denominator of Eq. (2b) will
fluctuate and this will give rise to fluctuations in x; and
hence the one-photon Rabi frequency. Typically, however,
the fluctuations of y3 are dominated by only one of the fac-
tors, specifically the two-photon resonance term. Further,
since the fundamental field’s frequency fluctuations will
likely be small in comparison to the resonance detuning, Eq.
(2b) can be rewritten as

oy~ S, 8l lrm)mrin)nirie)

n.m.q (wqg"3<7)1)(wmg—ZE)l)(w,,g—a')l)

25(01
(wmg—zal)

x| 1+ . (3)

(Notice that the correlation between x3 and the laser fre-
quency fluctuations can be either positive or negative, de-
pending on the detuning of the laser from the two-photon
resonance.) Writing x in terms of its average value y3 and a
mean-zero stochastic quantity Sx3(t), Eqs. (2a) and (3) in-
dicate that f is subject to additive noise and that under opti-
mal conditions (i.e., (f)=1)

P 26
f(t)=(l+ X_"(t))=(1+——-—-Z‘m), (4)
\ 2

X3

where A, is the two-photon detuning in the nonlinear me-
dium. Thus the stochastic variations of both 8 and f in (3
+1)-photon phase control derive from the fundamental
field’s frequency fluctuations.

The fundamental field is described in terms of our stan-
dard model for stochastic laser characteristics [6]: E(t)
=Ey(1+ €)cos[(@; + dw))t], where

{e(t)e(t+ T))=—‘§f-exp[—wf[r|] (5a)

and

PRA 59

ST T T T 1 T 1
N oo @

%.
\\ 0@.,,@@&.0. ]

log, o [S(6) (arb. units)]

16
14—
12—

10—

Contrast, {
o]
I

logy [2y (H2)]

FIG. 2. (a) Signal amplitude versus laser linewidth. Circles cor-
respond to constructive interference, while diamonds correspond to
destructive interference: Filled black symbols correspond to A,
=2, gray symbols correspond to A, =100 cm™!, and open symbols
correspond to A, =10cm™!. The solid lines correspond to previous
results with a PDF, while the dashed lines are simply meant as an
aid to guide the eye. (b) Contrast { versus laser linewidth. Symbol
shading is as in (a) and again the solid line corresponds to previous
PDF results.

(S (t)Sw(t+1))=yBexp[— Bl7l]. (5b)

Basically, y defines the linewidth of the nearly Lorentzian
line shape, B is a cutoff parameter for the line-shape wings,
and oy is a bandwidth parameter associated with the funda-
mental field’s amplitude fluctuations.

Our computational procedure is equivalent to that dis-
cussed previously [3]. We generate a realization of the fun-
damental field’s frequency and amplitude fluctuations and
then numerically integrate the relevant Xe density matrix
equations for a 1-ns Gaussian pulse using a Runge-Kutta-
Fehlberg technique [7], including now the third-harmonic
field’s additive noise. The signal that exhibits phase control
is the total ionization S(#6,) produced by the field during the
pulse. Computing two ionization signals S(0) and S( ), we
define the contrast of phase control as {
=log;o[ S(0)/S()]. For the results to be reported here,
=3y and B=100y, indicating that the fundamental field
was a near-chaotic field with an essentially Lorentzian line
shape. The peak intensity of the fundamental field was
108 W/cm? (i.e., weak-field conditions) and the transition ac
Stark shift was set to zero.
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Figure 2(a) shows the logarithm of the signal amplitude as
a function of the fundamental field’s linewidth parameter
(i.e., 29). Circles correspond to constructive interference sig-
nals, while diamonds correspond to destructive interference
signals: For the black symbols A, =0 (i.e., no fluctuations in
f), for the gray symbols A,=100cm™!, and for the open
symbols A,=10cm™!. The solid lines correspond to our
previous results with a PDF, while the dashed lines are sim-
ply meant as an aid to guide the eye. Considering for the
moment the case of A,=o, laser intensity noise increases
the signal amplitude dramatically for both constructive and
destructive interference, as one might expect. Specifically,
the signal enhancement factor is on the order of 50-70.
(Note that for a nonresonant five-photon ionization process
induced by a chaotic field, one would expect a 5! signal
enhancement [8].) As additive noise for the harmonic field is
increased, there is little change in the constructive interfer-
ence signal amplitude, but a noticeable increase in the de-
structive interference signal. For example, in the case of A,
=10cm™! at 2y=1MHz, the additive noise increases the
destructive signal amplitude by more than three orders of
magnitude even though 8f~3X 107>, This behavior is
reflected in the contrast of phase control shown in Fig. 2(b),
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where the shading of the symbols is the same as in Fig. 2(a)
and the solid line again corresponds to our previous results
with a PDF.

Clearly, Fig. 2(b) demonstrates that a small amount of
additive noise can have a signiﬁcant influence on the contrast
of phase control. However even in the worst (reasonable)
case of A,=10cm™! and a field linewidth of approxnmately
1 cm™!, the phase control contrast is two orders of magni-
tude. Thus in an absolute sense phase control appears to be
extremely tolerant of stochastic fields. The absolute degree
of control predicted here, even in the worst case, is much
better than what has yet been demonstrated experimentally,
and from this we conclude that (3 + 1)-photon phase control
is limited at present by processes other than those discussed
here. For example, as noted by Chen and Elliot [9], overlap
and focusing of the fundamental field and its first harmonic
are extremely important for optimum phase control contrast.
Given the present results, it is quite likely that these other
experimental issues are the major processes limiting *‘orders
of magnitude’” (3 +1)-photon phase control and not any in-
herent stochastic fluctuations of the laser field.

This work was supported under U.S. Air Force Contract
No. FO4701-93-C-0094.
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